skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Xuhuinan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Polarization, as a fundamental property of light, plays a key role in many phenomena of near‐field coupling, namely the coupling of source's evanescent waves into some guided modes. As a typical example of the polarization‐locked phenomenon in the near‐field coupling, the Janus dipole has the orientation of its near‐field coupling face intrinsically determined by the polarization state of linearly‐polarized surface waves, specifically whether they are transverse‐magnetic (TM) or transverse‐electric (TE) surface waves. Here, a mechanism to achieve the directional near‐field coupling of Janus dipoles beyond polarization locking by leveraging hybrid TM‐TE surface waves is presented. These hybrid surface waves, as eigenmodes with both TM and TE wave components, can be supported by optical interfaces between different filling materials inside a parallel‐plate waveguide. Under the excitation of hybrid surface waves, it is found that the coupling and non‐coupling face of a Janus dipole may be switched, if the Janus dipole itself rotates in a plane parallel to the designed optical interface between different filling materials, without resorting to the change of surface‐wave polarization. The underlying mechanism is due to the capability of hybrid surface waves to extract both the source's TM and TE evanescent waves, which offers an alternative paradigm to regulate the interference in the near‐field coupling. 
    more » « less